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Abstract
Devices for nano- and molecular size electronics are currently a focus of
research aimed at an efficient current rectification and switching. Current
switching due to conformational changes in the molecules is slow, of the order
of a few kHz. Fast switching (∼1 THz) may be achieved, at least in principle,
in a degenerate molecular quantum dot with strong coupling of electrons with
vibrational excitations. We show that the mean-field approach fails to properly
describe intrinsic molecular switching and present an exact solution to the
problem.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For many applications one needs an intrinsic molecular ‘switch’, i.e. a bistable voltage-
addressable molecular system with very different resistances in the two states that can be
accessed very quickly [1]. There is a trade-off between the stability of a molecular state and
the ability to switch the molecule between two states with an external perturbation (we discuss
an electric field; switching involving absorbed photons is impractical at a nanoscale). Indeed,
the applied electric field, of the order of a typical breakdown field Eb � 107 V cm−1, is much
smaller than a typical atomic field ∼109 V cm−1, characteristic of the energy barriers. A small
barrier would be a subject for sporadic thermal switching, whereas a larger barrier ∼1–2 eV
would be impossible to overcome with the applied field. One may only change the relative
energy of the minima by an external field and, therefore, redistribute the molecules statistically
slightly inequivalently between the two states. An intrinsic disadvantage of the conformational
mechanism [2], involving motion of an ionic group, exceeding the electron mass by many
orders of magnitude, is a slow switching speed (∼kHz). In the case of supramolecular
complexes like rotaxanes and catenanes [3] there are two entangled parts which can change
mutual positions as a result of redox reactions (in solution). Thus, for rotaxane-based memory
devices a slow switching speed of ∼10−2 s was reported.
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Figure 1. Schematic diagram of a molecular quantum dot with central conjugated unit separated
from the electrodes by wide-band insulating molecular groups. The first electron tunnels into the
dot and occupies an empty (degenerate) state there. If the interaction between the first and second
incoming electron is repulsive, U > 0, then the dot will be in a Coulomb blockade regime (a). If the
electrons on the dot effectively attract each other, U < 0, the system will show current hysteresis
(b).

We have, therefore, explored the possibility for a fast molecular switching where switching
is due to strong correlation effects on the molecule itself, the so-called molecular quantum dot
(MQD). The molecular quantum dot consists of a central conjugated unit (containing half-
occupied, and, therefore, extended π -orbitals); see figure 1. Frequently, they are formed from
the p-states on carbon atoms, which are not saturated (i.e. they do not share electrons with
other atoms forming strong σ -bonds, with typical bonding–antibonding energy difference about
1 Ryd). Since the π -orbitals are half-occupied, they form HOMO–LUMO states. The size of
the HOMO–LUMO gap is then directly related to the size of the conjugated region d , figure 1,
by a standard estimate EHOMO−LUMO ∼ h̄2/md2 ∼ 2–5 eV. It is worth noting that in the

conjugated linear polymers like polyacetylene (− |
C= |

C)n the spread of the π -electron would
be d = ∞ and the expected EHOMO−LUMO = 0. However, such a one-dimensional metal is
impossible: Peierls distortion (C=C bond length dimerization) sets in and opens up a gap of
about ∼1.5 eV at the Fermi level [4–6]. In a molecular quantum dot the central conjugated part
is separated from electrodes by insulating groups with saturated σ -bonds, like for example the
alkane chains; see figure 1. Now, there are two main possibilities for carrier transport through
the MQD. If the length of at least one of the insulating groups L1(2) is not very large (the
conductance G1(2) is not much smaller than the conductance quantum G0 = 2e2/h), then the
transport through the MQD will proceed by resonant tunnelling processes. If, on the other hand,
both groups are such that the tunnel conductance G1(2) � G0, the charge on the dot will be
quantized. Then we will have another two possibilities: (i) the interaction of the extra carriers
on the dot is repulsive, U > 0, and we have a Coulomb blockade [7], or (ii) the effective
interaction is attractive, U < 0, then we would obtain current hysteresis and switching [8]
(see below). Coulomb blockade in molecular quantum dots has been demonstrated in [9]. In
these works, and in [10], three-terminal active molecular devices have been fabricated and
successfully tested.

Much faster switching compared to the conformational one may be caused by coupling to
the vibrational degrees of freedom, if the vibron-mediated attraction between two carriers on
the molecule is stronger than their direct Coulomb repulsion; see figure 1(b). The attractive
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energy (i.e. a negative ‘Hubbard’ U ) is the difference of two large interactions, the Coulomb
repulsion and the phonon-mediated attraction, of the order of 1 eV each; hence |U | ∼ 0.1 eV.

2. Failure of mean field model of polaron molecular switching

Although the correlated electron transport through mesoscopic systems with repulsive electron–
electron interactions has received considerable attention in the past, and continues to be
the focus of current studies, much less has been known about the role of electron–phonon
(e–ph) correlations in ‘molecular quantum dots’ (MQDs). Some while ago we have proposed
a negative-U Hubbard model of a d-fold degenerate quantum dot [11] and a polaron model of
resonant tunnelling through a molecule with a degenerate level [8]. We found that the attractive
electron correlations caused by any interaction within the molecule could lead to a molecular
switching effect where the I –V characteristics have two branches with high and low current at
the same bias voltage. This prediction has been confirmed and extended further in our theory
of correlated transport through degenerate MQDs with a full account of both the Coulomb
repulsion and realistic e–ph interactions. We have shown that while the phonon side-bands
significantly modify the shape of hysteretic I –V curves in comparison with the negative-U
Hubbard model, the switching remains robust. It shows up when the effective interaction of
polarons is attractive and the state of the dot is multiply degenerate, d > 2.

Nevertheless, later on Galperin et al [12] argued, without discussing the discrepancies
with the prior work, that even a non-degenerate electronic level (d = 1) coupled to a
single vibrational mode produces a hysteretic I –V curve, a current switching, and a negative
differential resistance. Here we explicitly calculate I –V curves of the nondegenerate (d = 1)
and two-fold degenerate (d = 2) MQDs to show that these findings are artefacts of the mean-
field approximation used in [12] that neglects the Fermi–Dirac statistics of electrons.

We start with a simple model that illustrates an absence of switching in a molecular
quantum dot, which has a non-degenerate (d = 1) or doubly degenerate (d = 2) level [13].
First, we shall illustrate the failure of the mean-field approximation on the simplest model of
a single atomic level coupled with a single one-dimensional oscillator with a displacement, x ,
described by a simple Hamiltonian,

H = ε0n̂ + f x n̂ − 1

2M

∂2

∂x2
+ kx2

2
. (1)

Here M and k are the oscillator mass and the spring constant, f is the interaction force, and
h̄ = c = kB = 1. This Hamiltonian is readily diagonalized with the exact displacement
transformation of the vibration coordinate x ,

x = y − n̂ f/k, (2)

to the transformed Hamiltonian without e–ph coupling,

H̃ = εn̂ − 1

2M

∂2

∂y2
+ ky2

2
, (3)

ε = ε0 − Ep, (4)

where we used n̂2 = n̂ because of the Fermi–Dirac statistics. It describes a small polaron at
the atomic level ε0 shifted down by the polaron level shift Ep = f 2/2k, and entirely decoupled
from ion vibrations. The ion vibrates near a new equilibrium position, shifted by f/k, with
the ‘old’ frequency (k/M)1/2. As a result of the local ion deformation, the total energy of
the whole system decreases by Ep since a decrease of the electron energy by −2Ep overruns
an increase of the deformation energy Ep. The major error of the mean-field approximation
of [12] originates in illegitimate replacement of the square of the occupation number operator
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Figure 2. Two localized electrons at sites 1 and 2 shift the equilibrium position of the ion at site 3.
As a result, the two electrons attract each other.

n̂ = c†
0c0 by its ‘mean-field’ expression n̂2 = n0n̂ which contains the average population of

a single molecular level, n0, in disagreement with the exact identity, n̂2 = n̂. This leads to a
spurious self-interaction of a single polaron with itself (i.e. the term ε = ε0 − n0 Ep instead of
equation (4)), and a resulting non-existent nonlinearity in the rate equation.

Lattice deformation also strongly affects the interaction between electrons. When a short-
range deformation potential and molecular e–ph interactions are taken into account together
with the long-range Fröhlich interaction, they can overcome the Coulomb repulsion. The
resulting interaction becomes attractive at a short distance comparable to a lattice constant.
The origin of the attractive force between two small polarons can be readily understood from
a similar Holstein-like toy model as above [14], but with two electrons on neighbouring sites
1, 2 interacting with an ion 3 between them; see figure 2. For generality, we now assume that
the ion is a three-dimensional oscillator described by a displacement vector u, rather than by a
single-component displacement x as in equation (1).

The vibration part of the Hamiltonian in the model is

Hph = − 1

2M

∂2

∂u2 + ku2

2
. (5)

Electron potential energies due to the Coulomb interaction with the ion are about

V1,2 = V0(1 − u · e1,2/a), (6)

where e1,2 are unit vectors connecting sites 1, 2 and site 3, respectively. Hence, the Hamiltonian
of the model is given by

H = Ea(n̂1 + n̂2) + u · (f1n̂1 + f2n̂2) − 1

2M

∂2

∂u2 + ku2

2
, (7)

where f1,2 = Ze2e1,2/a2 is the Coulomb force, and n̂1,2 are occupation number operators
at every site. This Hamiltonian is also readily diagonalized by the same displacement
transformation of the vibronic coordinate u as above,

u = v − (
f1n̂1 + f2n̂2

)
/k. (8)

The transformed Hamiltonian has no e–ph coupling,

H̃ = (ε0 − Ep)(n̂1 + n̂2) + Vphn̂1n̂2 − 1

2M

∂2

∂v2
+ kv2

2
, (9)
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and it describes two small polarons at their atomic levels shifted by the polaron level shift
Ep = f 2

1,2/2k, which are entirely decoupled from ion vibrations. As a result, the lattice
deformation caused by two electrons leads to an effective interaction between them, Vph, which
should be added to their Coulomb repulsion, Vc,

Vph = −f1 · f2/k. (10)

When Vph is negative and larger by magnitude than the positive Vc, the resulting interaction
becomes attractive. That is Vph rather than Ep, which is responsible for the hysteretic behaviour
of MQDs, as discussed below.

3. Exact solution of polaron switching

The procedure, which fully accounts for all correlations in MQDs, is as follows; see [8].
The molecular Hamiltonian includes the Coulomb repulsion, U C, and the electron–vibron
interaction as

H =
∑

μ

εμn̂μ + 1
2

∑

μ �=μ′
U C

μμ′ n̂μn̂μ′ +
∑

μ,q

n̂μωq(γμqdq + H.c.) +
∑

q

ωq(d
†
q dq + 1/2). (11)

Here dq annihilates phonons, ωq is the phonon (vibron) frequency, and γμq are the electron–
vibron coupling constant (q enumerates the vibron modes). This Hamiltonian conserves the
occupation numbers of molecular states n̂μ.

One can apply the canonical unitary transformation eS, with

S = −
∑

q,μ

n̂μ

(
γμqdq − H.c.

)

integrating phonons out. The electron and phonon operators are transformed as

c̃μ = cμ Xμ, Xμ = exp

(∑

q

γμqdq − H.c.

)
(12)

and

d̃q = dq −
∑

μ

n̂μγ ∗
μq, (13)

respectively. This Lang–Firsov transformation shifts ions to new equilibrium positions with no
effect on the phonon frequencies. The diagonalization is exact:

H̃ =
∑

i

ε̃μn̂μ +
∑

q

ωq(d
†
q dq + 1/2) + 1

2

∑

μ �=μ′
Uμμ′ n̂μn̂μ′ , (14)

where

Uμμ′ ≡ U C
μμ′ − 2

∑

q

γ ∗
μqγμ′qωq , (15)

is the renormalized interaction of polarons comprising their interaction via molecular
deformations (vibrons) and the original Coulomb repulsion, U C

μμ′ . The molecular energy levels
are shifted by the polaron level-shift due to the deformation created by the polaron,

ε̃μ = εμ−
∑

q

|γμq |2ωq . (16)

If we assume that the coupling to the leads is weak, so that the level width � � |U |, we
can find the current from [15]

I (V ) = e�
∫ ∞

−∞
dω

[
f1(ω) − f2(ω)

]
ρ(ω), (17)

ρ(ω) = − 1

π

∑

μ

Im Ĝ R
μ(ω), (18)
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where |μ〉 is a complete set of one-particle molecular states, and f1(2)(ω) = (
exp ω+
∓eV/2

T +
1
)−1

is the Fermi function. Here ρ(ω) is the molecular density of states (DOS), Ĝ R
μ(ω) is

the Fourier transform of the Green’s function (GF) Ĝ R
μ(t) = −iθ(t)〈{cμ(t), c†

μ}〉, {· · · , · · ·} is
the anticommutator, cμ(t) = eiH tcμe−iH t , and θ(t) = 1 for t > 0 and zero otherwise. We
calculate ρ(ω) exactly for the Hamiltonian (14), which includes both the Coulomb U C and
electron–vibron interactions.

The retarded GF becomes

G R
μ(t) = −iθ(t)

[〈
cμ(t)c†

μ

〉 〈
Xμ(t)X†

μ

〉 + 〈
c†
μcμ(t)

〉 〈
X†

μ Xμ(t)
〉]

. (19)

The phonon correlator is simply

〈
Xμ(t)X†

μ

〉 = exp
∑

q

|γμq |2
sinh βωq

2

[
cos

(
ωt + i

βωq

2

)
− cosh

βωq

2

]
, (20)

where the inverse temperature β = 1/T , and 〈X†
μ Xμ(t)〉 = 〈Xμ(t)X†

μ〉∗. The remaining GFs,
〈cμ(t)c†

μ〉, are found from the equations of motion exactly. For the simplest case of a coupling
to a single mode with the characteristic frequency ω0, γq ≡ γ and Uμμ′ = U one obtains [8]

G R
μ(ω) = Z

d−1∑

r=0

Cr (n)

∞∑

l=0

Il(ξ)

×
[

e
βω0 l

2

(
1 − n

ω − rU − lω0 + iδ
+ n

ω − rU + lω0 + iδ

)
+ (1 − δl0)e

− βω0 l
2

×
(

1 − n

ω − rU + lω0 + iδ
+ n

ω − rU − lω0 + iδ

)]
, (21)

where

Z = exp

(

−
∑

q

|γq |2 coth
βωq

2

)

(22)

is the familiar polaron narrowing factor, the degeneracy factor

Cr (n) = (d − 1)!
r !(d − 1 − r)!nr (1 − n)d−1−r , (23)

ξ = |γ |2/ sinh βω0

2 , Il(ξ) is the modified Bessel function, and δlk is the Kronecker symbol.
Then using equation (18) the exact spectral function for a d-fold degenerate MQD (i.e. the

density of molecular states, DOS) is found as

ρ(ω) = Zd
d−1∑

r=0

Cr (n)

∞∑

l=0

Il(ξ)[eβω0l/2 [(1 − n)δ(ω − rU − lω0) + nδ(ω − rU + lω0)]

+ (1 − δl0)e
−βω0l/2[nδ(ω − rU − lω0) + (1 − n)δ(ω − rU + lω0)]]. (24)

The important feature of the DOS, equation (24), is its nonlinear dependence on the
average electronic population n = 〈c†

μcμ〉, which leads to the switching, hysteresis, and other
nonlinear effects in the I –V characteristics for d > 2. It appears due to correlations between
different electronic states via the correlation coefficients Cr (n). There is no nonlinearity if the
dot is nondegenerate, d = 1, since C0(n) = 1. In this simple case the DOS, equation (24), is a
linear function of the average population that can be found as a textbook example of an exactly
solvable problems [16].

6
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In the present case of an MQD weakly coupled with leads, one can apply the Fermi–Dirac
golden rule to obtain an equation for n. Equating incoming and outgoing numbers of electrons
in the MQD per unit time we obtain the self-consistent equation for the level occupation n as

(1 − n)

∫ ∞

−∞
dω {�1 f1(ω) + �2 f2(ω)}ρ(ω)

= n
∫ ∞

−∞
dω {�1[1 − f1(ω)] + �2[1 − f2(ω)]}ρ(ω), (25)

where �1(2) are the transition rates from the left (right) leads to the MQD, and ρ(ω) is found
from equation (24). For d = 1, 2 the kinetic equation for n has only one physical root, and
the switching is absent. Switching appears for d � 3, when the kinetic equation becomes
nonlinear. Taking into account that

∫ ∞
−∞ ρ(ω) = d , equation (25) for the symmetric leads,

�1 = �2, reduces to

2nd =
∫

dω ρ(ω)( f1 + f2), (26)

which automatically satisfies 0 � n � 1. Explicitly, the self-consistent equation for the
occupation number is

n = 1
2

d−1∑

r=0

Zr (n)[nar + (1 − n)br ], (27)

where

a+
r = Z

∞∑

l=0

Il(ξ)
(

e
βω0 l

2 [ f1(rU − lω0) + f2(rU − lω0)]

+ (1 − δl0)e
− βω0 l

2 [ f1(rU + lω0) + f2(rU + lω0)]
)
, (28)

b+
r = Z

∞∑

l=0

Il(ξ)
(

e
βω0 l

2 [ f1(rU + lω0) + f2(rU + lω0)]

+ (1 − δl0)e
− βω0 l

2 [ f1(rU − lω0) + f2(rU − lω0)]
)
. (29)

The current is expressed as

j ≡ I (V )

I0
=

d−1∑

r=0

Zr (n)[na−
r + (1 − n)b−

r ], (30)

where

a−
r = Z

∞∑

l=0

Il(ξ)
(

e
βω0 l

2 [ f1(rU − lω0) − f2(rU − lω0)]

+ (1 − δl0)e
− βω0 l

2 [ f1(rU + lω0) − f2(rU + lω0)]
)
, (31)

b−
r = Z

∞∑

l=0

Il(ξ)
(

e
βω0 l

2 [ f1(rU + lω0) − f2(rU + lω0)]

× (1 − δl0)e
− βω0 l

2 [ f1(rU − lω0) − f2(rU − lω0)]
)
, (32)

and I0 = ed�.

7
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Figure 3. Current–voltage characteristic of the nondegenerate (d = 1) MQD at T = 0,
ω0/
 = 0.2, and γ 2 = 11/13. There is a phonon ladder in I–V , but no hysteresis.

4. Absence of switching of singly or doubly degenerate MQDs

If the transition rates from electrodes to the MQD are small, � � ω0, the rate equation for n
and the current, I (V ), are readily obtained by using the exact molecular DOS, equation (24),
and the Fermi–Dirac Golden rule. In particular, for a nondegenerate MQD and T = 0 K the
result is

n = b+
0

2 + b+
0 − a+

0

, (33)

and

j = 2b−
0 + a−

0 b+
0 − a+

0 b−
0

2 + b+
0 − a+

0

. (34)

The general expressions for the coefficients equations (28), (29) and equations (31), (32) at
arbitrary temperatures in [8] are simplified in the low-temperature limit as

a±
0 = Z

∞∑

l=0

|γ |2l

l! [�(lω0 − 
 + eV/2) ± �(lω0 − 
 − eV/2)], (35)

b±
0 = Z

∞∑

l=0

|γ |2l

l! [�(−lω0 − 
 + eV/2) ± �(−lω0 − 
 − eV/2)], (36)

where 
 is the position of the MQD level with respect to the Fermi level at V = 0, and
�(x) = 1 if x > 0 and zero otherwise. The current is single valued, figure 3, with the familiar
steps due to phonon side-bands.

8
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Figure 4. The current–voltage characteristic of two-fold degenerate MQDs (d = 2) does not show
hysteretic behaviour. The parameters are the same as in figure 3. The larger number of elementary
processes for conductance compared to the nondegenerate case of d = 1 generates more steps in
the phonon ladder in comparison with figure 3.

In contrast, the mean-field approximation (MFA) leads to the opposite conclusion.
Galperin et al [12] have replaced the occupation number operator n̂ in the e–ph interaction by
the average population n0 (equation (2) of [12]) and found the average steady-state vibronic
displacement 〈d + d†〉 to be proportional to n0 (this is an explicit neglect of all quantum
fluctuations on the dot accounted for in the exact solution). Then, replacing the displacement
operator d + d† in the bare Hamiltonian, equation (11), by its average, [12], they obtained
a new molecular level, ε̃0 = ε0 − 2εreorgn0 shifted linearly with the average population of
the level. This is in stark disagreement with the conventional constant polaronic level shift,
equations (4), (16) (εreorg is |γ |2ω0 in our notations). The MFA spectral function turned out to
be highly nonlinear as a function of the population, e.g. for the weak-coupling with the leads
ρ(ω) = δ(ω − ε0 − 2εreorgn0); see equation (17) in [12]. As a result, the authors of [12]
have found multiple solutions for the steady-state population, equation (15) and figure 1, and
switching, figure 4 of [12], which actually do not exist, being an artefact of the approximation.

In the case of a doubly degenerate MQD, d = 2, there are two terms, which contribute to
the sum over r , with C0(n) = 1 − n and C1(n) = n. The rate equation becomes a quadratic
one [8]. Nevertheless there is only one physical root for any temperature and voltage, and the
current is also single-valued. The doubly degenerate level provides more elementary processes
for conductance reflected in larger number of steps on phonon ladder compared to d = 2 case,
figure 4.

Note that the mean-field solution by Galperin et al [12] applies at any ratio �/ω0, including
the limit of interest to us, � � ω0, where their transition between the states with n0 = 0
and 1 only sharpens, but none of the results change. Therefore, the MFA predicts a current

9
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bistability in the system where it does not exist at d = 1. Reference [12] plots the results for
� � ω0, � ≈ 0.1–0.3 eV, which corresponds to molecular bridges with a resistance of about
a few 100 k�. Such model ‘molecules’ are rather ‘metallic’ in their conductance and could
hardly show any bistability at all because carriers do not have time to interact with vibrons
on the molecule. Indeed, taking into account the coupling with the leads beyond the second
order and the coupling between the molecular and bath phonons could hardly provide any
nonlinearity because these couplings do not depend on the electron population. This rather
obvious conclusion for molecules strongly coupled to the electrodes can be reached in many
ways; see e.g. the derivation in [17, 18]. While [17, 18] do talk about telegraph current noise in
the model, there is no hysteresis in the adiabatic regime, �  ω0, either. This result certainly
has nothing to do with our mechanism of switching [8] that applies to molecular quantum dots
(� � ω0) with d > 2. Such a regime has not been studied in [17–19], which have applied
the adiabatic approximation, as being ‘too challenging problem’. Nevertheless, Mitra et al
[19] have misrepresented our formalism [8], claiming that it ‘lacks of renormalization of the
dot–lead coupling’ (due to electron–vibron interaction), or ‘treats it in an average manner’. In
fact, the formalism [8] is exact, fully taking into account the polaronic renormalization, phonon
side-bands and polaron–polaron correlations in the exact molecular DOS, equation (24).

In fact, most of the molecules are very resistive, so the actual molecular quantum dots are
in the regime we study; see [20]. For example, the resistance of fully conjugated three-phenyl-
ring Tour–Reed molecules chemically bonded to metallic Au electrodes [2] exceeds 1 G�.
Therefore, most of the molecules of interest to us are in the regime that we discussed, not that
of [17, 18].

5. Nonlinear rate equation and switching

The switching appears only for d > 2. For example, for d = 4 the rate equation (27) is of the
fourth power in n,

2n = (1 − n)3[na+
0 + (1 − n)b+

0 ] + 3n(1 − n)2[na+
1 + (1 − n)b+

1 ]
+ 3n2(1 − n)[na+

2 + (1 − n)b+
2 ] + n3[na+

3 + (1 − n)b+
3 ]. (37)

In contrast to that for the non-degenerate or doubly degenerate MQD, the rate equation
for d = 4 has two stable physical roots in a certain voltage range and the current–voltage
characteristics show a hysteretic behaviour. Our numerical results [8] for ω0 = 0.2 (in
units of 
, as are all the energies in the problem), U C = 0, and for the coupling constant,
γ 2 = 11/13 are shown in figure 5. This case formally corresponds to a negative Hubbard
U = −2γ 2ω0 ≈ −0.4 (we selected those values of γ 2 to avoid accidental commensurability
of the correlated levels separated by U and the phonon side-bands). The threshold for the onset
of bistability appears at a voltage bias eV/2
 = 0.86 for γ 2 = 11/13 and ω0 = 0.2. The steps
on the I –V curve, figure 5, are generated by the phonon side-bands originating from correlated
levels in the dot with the energies 
, 
 + U, . . . ,
 + (d − 1)U . Since ω0 is not generally
commensurate with U , we obtain a quite irregular picture of the steps in I –V curves. The
bistability region reduces with temperature.

Note that switching required a degenerate MQD (d > 2) and weak coupling to the
electrodes, � � ω0. In contrast to that for a non-degenerate dot, the rate equation for a multi-
degenerate dot, d > 2, weakly coupled to the leads has multiple physical roots in a certain
voltage range and a hysteretic behaviour due to correlations between different electronic states
of the MQD.
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eV/2Δ eV/2Δ

I/
I 0

I/
I 0

I/
I 0

Figure 5. The bistable I–V curves for tunnelling through a molecular quantum dot with the
electron–vibron coupling constant γ 2 = 11/13 and ω0/
 = 0.2. The up arrows show that the
current picks up at some voltage when it is biased, and then drops at lower voltage when the bias is
being reduced. The bias dependence of current basically repeats the shape of the level occupation n
(right column). Steps on the curve correspond to the changing population of the phonon side-bands.

6. Summary

We have calculated the I –V characteristics of non-degenerate (d = 1) and two-fold degenerate
(d = 2) molecular quantum dots showing no hysteretic behaviour of current, and concluded
that the mean field approximation [12] leads to a non-existent switching in a model that was
solved exactly in [8]. In contrast to those for non-degenerate and two-fold degenerate dots, the
rate equation for a multi-degenerate dot, d > 2, weakly coupled to the leads, has multiple
physical roots in a certain voltage range showing hysteretic behaviour due to correlations
between different electronic states of the MQD [8]. Pair tunnelling is also allowed in our model,
though it should only result in tiny peaks on the background of the main current contributed by
single-polaron tunnelling. Our conclusions are important for searching for current-controlled
polaronic molecular-size switches. Incidentally, C60 molecules have a degeneracy d = 6 of the
lowest unoccupied level, which makes them one of the most promising candidate systems, if
the weak coupling with leads is secured.
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